Αναζήτηση / Search

  
Τα laser και οι εφαρμογές τους - 1. Εισαγωγή
Τα laser και οι εφαρμογές τους - 1. Εισαγωγή
Τα laser και οι εφαρμογές τους - 1. Εισαγωγή
Τα laser και οι εφαρμογές τους - 1. Εισαγωγή
Τα laser και οι εφαρμογές τους - 1. Εισαγωγή
Τα laser και οι εφαρμογές τους - 1. Εισαγωγή
Τα laser και οι εφαρμογές τους - 1. Εισαγωγή

 

 

 

Περιεχόμενα/Contents

Τα laser και οι εφαρμογές τους
• 1. Εισαγωγή
• 2. Μηχανισμός δημιουργίας της ΗΜΑ laser
• 3. Η διάταξη του συστήματος παραγωγής
• 4. Οπτική κοιλότητα και μορφή της ακτινοβολίας
• 5. Ενίσχυση - Απόδοση
• 6. Είδη laser και οι χαρακτηριστικές τους ιδιότητες
• 7. Μέτρηση της ΗΜΑ
• 8. Εφραρμογές του laser
• 9. Ολογραφία
• 10. Ασφαλής χρήση των laser

 

Σκοπός της ανάπτυξης του θέματος είναι η συγκεντρωμένη παρουσίαση ιδιοτήτων και εφαρμογών της ακτινοβολίας Laser. Με την ταχύτατη εξέλιξη της σύγχρονης τεχνολογίας, η ακτινοβολία Laser έχει βρει εφαρμογές σε πολλούς και συχνά άσχετους μεταξύ τους επιστημονικούς κλάδους.

Παρόλη όμως την προσπάθεια για ολοκληρωμένη καταγραφή των κυριότερων ιδιοτήτων και εφαρμογών της ακτινοβολίας Laser είναι βέβαιο πως σε μικρό χρονικό διάστημα η ανάπτυξη που ακολουθεί θα έχει γίνει ελλειπής.

Είναι γενικότερα διαπιστωμένο πως η «Σύγχρονη Φυσική», τμήμα της οποίας αποτελεί το κεφάλαιο «Laser», χρειάζεται συνεχή ανανέωση, αν θέλει να «τιμά» το όνομά της.

1. Εισαγωγή

1.1 Γενικά για την ακτινοβολία Laser

H ακτινοβολία Laser εφευρέθηκε το 1960 και μέχρι σήμερα χρησιμοποιείται σε επιστημονικά πεδία ευρέου φάσματος, όπως η ιατρική, η επικοινωνία, η καθημερινή πράξη, οι στρατιωτικές και βιομηχανικές εφαρμογές.

Επιγραμματικά το Laser είναι μια συσκευή που μετατρέπει ενέργεια διαφόρων μορφών (ηλεκτρομαγνητική, ηλεκτρική, χημική κ.ά.) σε ηλεκτρομαγνητική.

Το ακρωνύμιο (ακρώνυμο) LASER (Light Amplification by Stimulated Emission of Radiation) σημαίνει: Ενίσχυση Φωτός με Εξαναγκασμένη Εκπομπή Ακτινοβολίας.

Η ηλεκτρομαγνητική ακτινοβολία Laser μπορεί να ανήκει σε οποιοδήποτε τμήμα του ΗΜ φάσματος: ορατό, υπεριώδες, υπέρυθρο, ακτίνες Χ. 
 
1.2 Ηλεκτρομαγνητική ακτινοβολία (ΗΜΑ)

Η ηλεκτρομαγνητική ακτινοβολία (ΗΜΑ) είναι ένα ημιτονοειδές κύμα στο οποίο ταλαντώνονται συμφασικά ένα ηλεκτρικό και ένα μαγνητικό πεδίο σε κάθετα μεταξύ τους επίπεδα. Αν θεωρήσουμε το σύστημα των τριών αξόνων ΟΧΥΖ με τρόπο ώστε το ηλεκτρομαγνητικό κύμα να διαδίδεται κατά μήκος του άξονα ΟΧ, τότε η ένταση του ηλεκτρικού πεδίου και η ένταση του μαγνητικού πεδίου θα ταλαντώνονται στα επίπεδα ΟΧΥ και ΟΧΖ αντίστοιχα.

Όπως κάθε ημιτονοειδώς ταλαντούμενο κύμα, η ηλεκτρομαγνητική ακτινοβολία χαρακτηρίζεται από τις φυσικές ποσότητες: μήκος κύματος (λ), και περίοδος (Τ). 

Το μήκος κύματος (λ) είναι η ελάχιστη απόσταση μεταξύ δύο γειτονικών σημείων της ταλάντωσης που έχουν την ίδια φάση στο διάγραμμα: μετατόπιση ως προς το χώρο.

Περίοδος (Τ) είναι η ελάχιστη απόσταση μεταξύ δύο γειτονικών σημείων της ταλάντωσης που έχουν την ίδια φάση στο διάγραμμα: μετατόπιση ως προς το χρόνο.

Η ΗΜΑ διέπεται από τη θεμελιώδη σχέση: Ε = hv ή Ε = h c/λ, όπου 
E η ενέργεια της ΗΜΑ
h η σταθερά του Planck
v η συχνότητα ταλάντωσης, με v = c / λ
c η ταχύτητα διάδοσης
λ το μήκος κύματος

Πίνακας Ι

Η ΗΜΑ έχει συμπεριφορά που εξαρτάται από την ενέργειά της, επομένως και από τη συχνότητά της και από το μήκος κύματος. Μεγάλη ενέργεια (και συχνότητα) έχουν οι ακτίνες Χ και γ (στο ένα άκρο του φάσματος), ενώ μικρή ενέργεια έχουν τα ραδιοκύματα (Πίνακας Ι).

Το μήκος κύματος της ΗΜΑ αυξάνεται αντιστρόφως ανάλογα με την συχνότητα (και την ενέργεια) της ακτινοβολίας.

Η ταχύτητα διάδοσης c της ΗΜΑ, δεν εξαρτάται από το είδος της ακτινοβολίας, αλλά μόνον από το μέσον διάδοσής της (κενό ή ύλη).

Παραδείγματα «διαφορετικής συμπεριφοράς» της ΗΜΑ ανάλογα με το μήκος κύματος:
α. Τα ραδιοκύματα (των οποίων το μήκος κύματος είναι της τάξης των μερικών μέτρων) απαιτούν μεγάλες κεραίες (για την εκπομπή και την «σύλληψή» τους), καθόσον το μήκος της κεραίας πρέπει να είναι της ίδιας τάξης μεγέθους με το μήκος κύματος.
β. Τα μικροκύματα του φούρνου της κουζίνας μας (μήκους κύματος της τάξης των εκατοστών του μέτρου) δεν διαπερνούν το προστατευτικό πλέγμα της πόρτας του φούρνου, ενώ το ορατό φως (που ανάβει ταυτόχρονα στο εσωτερικό), μπορεί να το διαπεράσει επειδή έχει πολύ μικρότερο μήκος κύματος.
γ. Οι ακτίνες Χ, και ακόμα περισσότερο οι ακτίνες γ, έχουν τόσο μικρό μήκος κύματος και τόσο μεγάλη ενέργεια που διαπερνούν το ανθρώπινο σώμα (ακτινογραφίες, γ-camera) και γενικά προκαλούν ιοντισμούς στην ύλη (ιοντίζουσες ακτινοβολίες).
Η ΗΜΑ συμπεριφέρεται και ως διάδοση διακριτών ποσών ενέργειας: των φωτονίων.

1.2.1 Διάδοση της ΗΜΑ σε κενό

Η ΗΜΑ είναι ένα εγκάρσιο κύμα που διαδίδεται (και) στο κενό με σταθερή ταχύτητα:  την ταχύτητα του φωτός (c),  που είναι ανεξάρτητη από την ενέργεια και το μήκος κύματος της ακτινοβολίας. Δηλαδή το ορατό φως, τα ραδιοκύματα και οι ακτίνες Χ διαδίδονται όλα με την ίδια ταχύτητα.

Η συχνότητα μιας περιοδικής κίνησης είναι ο αριθμός των πλήρων ταλαντώσεων στη μονάδα του χρόνου. Στην κυματική και στην ΗΜΑ η συχνότητα (v) είναι και ο αριθμός των μηκών κύματος (λ) στη μονάδα του χρόνου και ισχύει:  c = λ × v 

1.2.2 Διάδοση της ΗΜΑ στην ύλη 

Όταν ΗΜΑ διαδίδεται μέσα από ύλη, η ταχύτητα διάδοσης μειώνεται (σε σχέση με το κενό) κατά ένα συντελεστή “n”, όπου n ο δείκτης διάθλασης του υλικού.

                                   c           ταχύτητα ΗΜΑ στο κενό
Δηλαδή            n =   ------  =  ----------------------------------------------
                                   v           ταχύτητα ΗΜΑ στο υλικό

Πολύ αραιά μέσα, όπως ο αέρας, θεωρείται πως έχουν n=1. Τα περισσότερα διαφανή (στο ορατό) μέσα έχουν n = 1,4 ως 1,8,  ενώ τα υλικά που είναι διαφανή στο υπέρυθρο έχουν n = 2,0 ως 4,0.

Η μειωμένη ταχύτητα της ΗΜΑ σε κάθε υλικό συνδέεται με αντίστοιχη μείωση του μήκους κύματος. Η φυσική ποσότητα που παραμένει αναλλοίωτη (όταν η ΗΜΑ περνά από ένα υλικό σε άλλο) είναι η συχνότητα της ακτινοβολίας.

Εξαιτίας της μείωσης της ταχύτητας διάδοσης της ΗΜΑ (και παράλληλα του μήκους κύματος) καθώς η ακτινοβολία εισέρχεται σε υλικό οπτικά πυκνότερο, έχει ως αποτέλεσμα το γνωστό φαινόμενο της διάθλασης, δηλαδή ξαφνική αλλαγή στη διεύθυνση-πορεία της, το δε μέγεθος της γωνίας απόκλισης είναι τόσο μεγαλύτερο, όσο μεγαλύτερη είναι η διαφορά στον δείκτη διάθλασης.

Όταν όμως λευκό φως προσπέσει σε διαφανές πρίσμα, εκτός από τη διάθλαση, παρατηρείται και ανάλυση του φωτός: το λευκό φως αναλύεται στα χρώματα του ουράνιου τόξου. Αυτό οφείλεται στο ότι ο δείκτης διάθλασης κάθε υλικού εξαρτάται από το μήκος κύματος της HMA. Δηλαδή κάθε συνιστώσα του λευκού φωτός (γειτονικά – διαδοχικά μήκη κύματος από 400-700 nm) θα διαθλαστεί με λίγο διαφορετική γωνία από τη γειτονική της.

1.3 Οι χαρακτηριστικές ιδιότητες της ακτινοβολίας Laser

To κοινό φως (από τον ήλιο ή τις λάμπες φωτισμού) αποτελείται από πολλά διαφορετικά μήκη κύματος που διαδίδονται προς όλες τις κατευθύνσεις και δεν υπάρχει καμιά σχέση που να συνδέει τη φάση των κυμάτων μεταξύ τους.

Η ΗΜΑ Laser έχει τρεις ιδιότητες-χαρακτηριστικά που δεν υπάρχουν στις άλλες ΗΜΑ. Ο συνδυασμός αυτών των ιδιοτήτων καθιστά τη δέσμη Laser ακτινοβολία με ιδιαίτερα μεγάλη πυκνότητα ισχύος.

1.3.1 Μονοχρωματικότητα

Δηλαδή ένα μόνον χρώμα, ένα μόνον μήκος κύματος.

Είναι γνωστό ότι όταν το κοινό λευκό φως διαπερνά ένα πρίσμα, αναλύεται στα συστατικά του που είναι τα βασικά χρώματα (του ουράνιου τόξου).

Το μάτι μας όμως σε συνεργασία με τον εγκέφαλο δεν μπορούν να αναλύσουν το λευκό φως και το βλέπουν ως ένα χρώμα.

Το φως Laser είναι ένα μόνο χρώμα, ένα μόνο μήκος κύματος, παρόλο που στην πράξη το ένα μήκος κύματος «συνοδεύεται» αναπόφευκτα από μια πολύ περιορισμένη ζώνη με μήκη κύματος λίγο μικρότερα και λίγο μεγαλύτερα του κεντρικού (φάσμα πολύ περιορισμένου εύρους).

1.3.2 Κατευθυντικότητα

Η εξερχόμενη δέσμη ΗΜΑ από τη συσκευή Laser έχει μια πορεία συγκεκριμένης κατεύθυνσης. Διαχέεται στη συνέχεια κατά μια γωνία απόκλισης, η οποία όμως είναι πολύ μικρότερη από τις αντίστοιχες άλλων πηγών ΗΜΑ.

Μπορεί να θεωρηθεί ότι οι ακτίνες της εξερχόμενης δέσμης είναι σχεδόν παράλληλες μεταξύ τους και το ισχυρό σήμα τους μπορεί να διανύσει πολύ μεγάλες αποστάσεις.

Όπως θα δούμε και στα κεφάλια των εφαρμογών, δέσμη Laser στέλνεται στην επιφάνεια της σελήνης, ανακλάται, επιστρέφει στη γη και μετρά την απόσταση των δυο ουρανίων σωμάτων με ακρίβεια χιλιοστού του μέτρου.

1.3.3 Συμφασικότητα

Εφόσον η ΗΜΑ είναι κυματικό φαινόμενο, κάθε ηλεκτρομαγνητικό κύμα μπορεί να περιγραφηθεί ως το άθροισμα – συνισταμένη ημιτονοειδών κυμάτων σε συνάρτηση με το χρόνο: y = A cos (ωt + φ)
 
Όπου Α είναι το πλάτος ταλάντωσης
 ω = 2πν είναι η γωνιακή συχνότητα
 φ  είναι η αρχική φάση του κύματος 
 ωt + φ  η στιγμιαία φάση του κύματος
 
Συμφασικά λέγονται τα κύματα που διατηρούν σταθερή τη σχετική φάση τους.

Η ΗΜΑ Laser συναποτελείται από κύματα ίδιου μήκους κύματος που ξεκινούν την ίδια στιγμή από την πηγή τους (ενεργό υλικό), επομένως έχουν την ίδια φάση.

Το άθροισμα αυτών των κυμάτων δίνει όμοιο κύμα μεγαλύτερου πλάτους ταλάντωσης.

Σοφία Κόττου, Επίκουρη Καθηγήτρια Ιατρικής Φυσικής
Ιατρική Σχολή Πανεπιστημίου Αθηνών
Τελευταία αναθεώρηση : 23/12/2007

Πνευματικά δικαιώματα © 2008 - Ασκληπιακό Πάρκο Ιατρικής Σχολής Πανεπιστημίου Αθηνών - Πιλοτική εφαρμογή - Ανάληψη ευθυνών
Επιστροφή στην αρχική σελίδα  -  Επικοινωνία


Σας παρακαλούμε να απαντήσετε στο απλό ερώτημα "Θα συνιστούσατε στους φίλους σας και στους γνωστούς σας να επισκεφτούν την Πύλη και να διαβάσουν το συγκεκριμένο κείμενο;" Η απλή αυτή ερώτηση (Business Week, Lanuary 20, 2006 - quoting a Harvard Business Review article) μπορεί να καταδείξει την απήχηση της συγκεκριμένης ιστοσελίδας, σχετικά με το αν επιτελεί το έργο για το οποίο έχει σχεδιαστεί. Βαθμολογήστε στην κλίμακα από 0 εώς 10. Η βαθμολογία σας θα καταχωρηθεί αυτομάτως.